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Gather ‘round the fire folks, we’re going to talk about the Visual Studio

IntelliCode story (and a bit of GitHub Copilot’s) from my vantage point. I

began the project as an individual contributor and was eventually

promoted to software engineering manager for IntelliCode. During the

four years I was there, I was part of an amazing team that took this

general idea of using AI to help coders be more productive, and helped it

crystalize into a product with a story worth telling. My role enabled me to

invent new ways of doing things, interact with our customers, plan and

execute on our engineering needs, measure the impact of our work, and

learn a ton about shipping AI tools to our customers.

As I’m starting to write this in the middle of 2023, we’re seeing an “AI

spring” of sorts with the proliferation of AI startups and unicorns post

ChatGPT. This “AI spring” has been years in the making, with some

sunny days along the last “AI winter” that tipped me personally in the

direction of going deeper into Artificial Intelligence. By mid-2018 I had

been working on a few AI projects at home to refresh my skills around

deep learning for computer vision (and separately robotics, but that’s

another story), specifically convolutional neural networks (CNNs). Along

the way, I started experimenting with recurrent neural networks (RNNs),

doing toy projects on very limited natural language generation. This was

enough to get me excited about what could be done by experts in the

field and by datasets larger than what I could scramble during weekend

work spikes. It’s at this point that I was invited to join the recently formed

IntelliCode team. I had been socializing my AI adventures with colleagues

and I was eager to jump to an opportunity to have impact in the AI space.

The beginning

The IntelliCode project originated in DevDiv’s Data Science team and

they were deeply involved throughout IntelliCode’s early years, from

demos and prototypes to production-quality AI models, they partnered

with engineering the whole way. The IntelliCode engineering team had

very humble beginnings, with just three individual contributors, one
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manager and one PM. We were working on our first attempt to help

developers increase productivity through an AI model that would

suggest the most likely entry in a completions list when one was

available. For example, say you have “if (string.” In your code. The dot in

the statement would trigger a completions list, and IntelliCode would

show starred ⭐  items at the very top of the list with entries such as

“Equals” or “IsNullOrEmpty”, based on the next phrase that was most

likely. Of course, the starred suggestion could be ignored, as the user

could still freely scroll the list and select the entry they’re looking for.

This first model was based on Markov chains and worked remarkably

well; for reference, think of this Markov chain model as a dictionary of

words where each word has weighted connections to the next word

based on the context. Our data set to train this model was modest,

comprising mostly of code publicly available in GitHub under an MIT

license (which we accessed the same way anyone else would, pulling the

repos into our own cache) and some internal Microsoft repositories,

focusing on learning about the use of common types such as the .NET

base class library. We had to deal with significant complexities – for

example to know what type was being used at any time we had to parse

the code and do type binding, an exercise that you can imagine isn’t

trivial when grabbing random code from the internet which may have

weird build steps, weird package imports, and even code that simply

doesn’t compile. This didn’t stop the data science team, and they

delivered a very capable model. It enabled the starred items experience

for multiple languages such as C#, VB.NET, Python,

TypeScript/JavaScript, C++, SQL and Java, but it had one disadvantage:

it only worked for types it knew about and based on contexts it knew

about. For example, it had great examples for the C# string class, with

different suggestions for methods, constructors, or loops. But it didn’t

have any suggestions for types defined by your own code. We shipped

this first AI model for VSCode and Visual Studio 2017 and found mostly

positive feedback from our users, which gave the project wings and the

political oxygen to keep growing.

One feature is out, now what?

At this point we knew we had to start measuring the impact IntelliCode

had on a developer’s performance to learn how to improve and what

direction to go next. We knew it was important to be data driven, but at

the same time we struggled to find a way to measure IntelliCode’s

impact. Was it fewer keystrokes? Was it a faster flow on completing a line

of code? Was it reduced bugs? We had no idea. And thankfully we didn’t

stop here long enough to ponder, because years later we discovered that

it didn’t matter. IntelliCode can make a developer feel more productive

by reducing the cognitive burden, which is close to impossible to

measure. But I digress, let’s go back to our next challenge: those missing

suggestions for types defined by your own code.

We envisioned two avenues of attack to go fix the issue with starred

items for types defined by your own code. The first approach was to

train a Markov chain model on your own code that IntelliCode would then

use to provide suggestions, we called this “custom models”. The second

approach was to generalize the problem and use deep learning

techniques to produce suggestions on types we’ve never seen before as

part of the base model we shipped in the box. We worked on both

approaches in parallel, delivering custom models (using the Markov

chain technique) relatively quickly. This first approach had the advantage

of “weathered technology” which made it easier to implement and quick



to deliver, we had all the plumbing in place to make it work but the model

training still required a wee bit of Azure data center pixie dust: a user

would initiate a custom model training of their code from Visual Studio,

allowing IntelliCode to gather metadata from their types, and then

sending the metadata to our servers for final processing. This reliance on

web services made the custom models approach not great for people

who thought Microsoft would see their code and use it in some fashion

other than to simply produce the promised IntelliCode model, which of

course was never the case; we were ourselves very focused on privacy

and compliance and shipped this solution that it was a temporary

solution while we brewed a more general model that didn’t require

training on types defined by your own code. If I recall correctly, at a

certain point we were training close to 14,000 custom models per day,

based on our server-side metrics. As soon as a customer downloaded

their newly trained model, we’d delete all assets on the service. But still,

we knew this wasn’t an ideal solution.

The second approach, based on deep learning, took a bit longer to cook,

and was first prototyped and shipped for Python on VSCode in early

2020. This was a groundbreaking moment for the team as it required

several new pieces of fundamental machinery to be put in place: 1) a

pipeline for a larger corpus of code to be studied, type-analyzed, and

put into model training mode, 2) a deep learning model runtime for

inference that was powerful and efficient enough to be run in your laptop

without draining your battery down too fast, and 3) the right techniques

to shrink the model down and run it in our recommended minimum specs

and within the time budget for a completions list, roughly under 60

milliseconds per shot in low power machines. That last point required

novel quantization techniques that yielded great results, and paired with

the ONNX runtime we found a way to ship this as a viable product. If you

wish to learn more about this specific model go and read The making of

Visual Studio IntelliCode's first deep learning model: a research

journey - Visual Studio Blog (microsoft.com). At this point we started

generalizing this deep learning model to other languages, and eventually

landed it in Visual Studio 2022 with support for both C# and VB.NET.

With this new technology you don’t need to train a custom model on

your code, you simply use a completions list on your types and voila,

starred items appear! There are, of course, limitations to this approach.

For example, the corpus of training data is strongly skewed towards

using the English language to name classes, methods, and variables,

which means that you may not get stars from this deep learning model

for your “Estudiante” class. Bummer, but still, we’re inching closer to a

more generic AI assistant for your coding needs. We celebrated this as a

big win for IntelliCode.

In parallel to the development of our deep learning completion list model,

we started partnering with the PROSE team from DevDiv to bring

program synthesis technologies into the IntelliCode offering. They had

produced the successful “flash fill” feature in Excel and we were ready to

adopt this technology to power our “repeated edits” experience. If

you’ve never used Visual Studio you’d be surprised when doing code

refactorings, seeing how IntelliCode suddenly suggests every single edit

you set yourself to do. PROSE works by analyzing the abstract syntax

tree of your code, and seeing it evolve over time with your edits. Once a

repeated pattern is recognized, a program for that pattern is synthesized

and offered as a Code Action in the editor, enabling the developer to

simply accept or ignore the patterns we’re picking up for them. It’s a

beautiful experience that has evolved drastically since its introduction in

Visual Studio 2019.
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Peeking into the next AI wave: language models

At this point of the IntelliCode story, we take a breather. We weren’t sure

that life inside a completions box and code actions was going to cut it for

much longer. We had a hunch that natural language processing (NLP)

models were an interesting and promising research avenue, with

examples such as Gmail Smart Compose leading the way in the

productization of NLP experiences since ~2018. In the summer of 2020

OpenAI unveiled their Generative Pre-trained Transformer 3 (GPT-3) a

large language model (LLM) which caused an immediate sensation in the

AI community. Very early on, a lot of folks noted that GPT-3 was able to

produce some code snippets at a higher-than-chance level of accuracy,

even though it had been trained on non-specialized data sets. This key

insight into GPT-3 inspired a race by several organizations, us included,

to find ways to force a transformer model into producing high quality

source code; we noticed that if you asked GPT-3 programming

questions it would give you an answer and generate some basic code. Its

Python skills were the best of all we tested, and even though it displayed

syntactic understanding, its semantic understanding was lacking. Yes,

we love to code, but also, it’s painful sometimes. We saw that

IntelliCode’s humble beginnings, with stars in the completions list and

repeated edits code actions, reduced the burden ever so slightly, and we

were hopeful that an NPL approach to helping developers would bring

even more lightness and joy to the coding experience.

Our data science team jumped into action, and we quickly formulated

our first approach to the problem. Note that all along, this was intended

to be an IntelliCode capability, and as a brand IntelliCode wants to be

useful, unobtrusive, and trustworthy. This means that from the get-go,

our goal was to run the model locally on your machine. You could get

IntelliCode’s features and goodness in Visual Studio even if you

programmed in an air-gapped offline work environment. By the autumn

of 2020 we had our first iteration of the model working, called GPT-C, an

AI transformer model that was able to produce high quality code

predictions. You can read more about this model’s operation

at IntelliCode Compose: Code Generation using Transformer

(arxiv.org) and Typing Less, Coding More: How we delivered

IntelliCode whole line completions with a transformer model - Visual

Studio Blog (microsoft.com). At this time the model wasn’t mature

enough to become a product; its high accuracy came at the expense of

its size and long inference time cost. The data science team continued

iterating and had a product-ready model by late 2021. This model was

trained on about 52,000 repositories from GitHub containing 1.2 billion

lines of code, with the training data modified so it would only look at the

code structure and semantics: no comments, string literals, character

literals or numeric literals were used to train GPT-C. Our recent

experience in training deep learning models based on code was

foundational to this effort, and the team did a formidable job at scaling

the model training process. We knew that it was critical for this model to

learn code structure but not comments or literals that could contain

sensitive or malicious data, and that the resulting model would have high

quality predictions without direct memorization.

But the model was just one layer of this onion. When we started to do

our early prototypes of the UX for predictive code, it was not obvious

that the Gmail Smart Compose model of showing predictive grey text

would translate well to programming. We tried it to promising results, but

we quickly found that there were big rocks to be moved before we could

ship to customers.
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UX problem 1: quality of the predicted text.

The biggest UX rock was the quality of the prediction. The model was

very good, but about half of the time it needed minor corrections to

make the code compile. When we had early users try the suggestions,

they quickly brought pitchforks to us and demanded a refund. We

learned that we needed a filtering and processing system for these

predictions so that the code that was produced wouldn’t introduce new

compilation errors. Think of the complexity of this problem: you’re typing

a program that’s not in a compilable state yet, and you need to check

that the code you’re producing doesn’t negatively affect the

compilability of the code. This means that we had to leverage the might

of advanced compiler tools (particularly the .NET compiler aka Roslyn,

and TreeSitter) to deduce whether the predicted code change

introduced any compilation errors, either inside of the prediction or

elsewhere in the code, and if so, edit or discard said prediction. We also

ran a comprehensive statistical analysis based on thousands of hours of

use of the unfiltered predictions internally and we were able to determine

that not all errors were created equal. An easy example of this is that we

could ignore missing semicolon errors introduced by our prediction, as

those are trivial and recoverable by users or by the model itself. Some

errors would have us toss the entire prediction, other errors simply trim

the prediction to the point of error, and so on. Kudos to Roslyn for being

such an awesome tool here. If I recall correctly, this resulted in about

40% of our predictions being edited or discarded, but the early users

flipped from hating us to loving us. Don’t believe that they loved us? If

you’re a C# developer and are used to IntelliCode line completions, try

using the product with the feature turned off for a week. It’s like the

oxygen is gone now! It’s one of those things where you only know how

good it is when you don’t have it anymore.

UX problem 2: presenting the predicted text.

The second UX rock was the presentation of the predicted text. We

experimented with showing the text in multiple ways, including a hideous

one where we’d use green squiggles under the suggested text. It was

bad. We quickly realized grey text with a slightly different look to your

regular code would be beneficial, but this in turn presented three

separate emerging problems: 1) How do you present this to a developer

with low vision? After all, Visual Studio has excellent support for

developers with vision impairment to be successful and productive, 2)

How do you accept or ignore a predicted suggestion? And 3) What

happens when there are completion lists in the way?

To tackle the first presentation problem when building a novel UX that is

accessible to developers with low vision, we spent hundreds of hours

following best design patterns for the code and doing A/B tests with

developers with low vision, using multiple voice assistance tools and

ensuring that the velocity, tone, and length of predictions are all working

well for them. It was interesting to do this testing ourselves, especially

when we combined localization and voice assistance, hearing Visual

Studio in Spanish was a trip.

To tackle the second presentation problem when accepting or ignoring

predictions, we quickly ran into people suggesting opposing solutions,

and it became apparent that it was a design decision rather than one

based on data. We settled for escape key to dismiss the prediction, tab

key to accept the prediction, and the ability to “walk the prediction” by

typing the text that was there, supporting backspace without dismissal in

the process. This worked out well for most people.



Finally, for the third presentation problem when dealing with completions

lists, this became an opportunity for us to “steer” the model into

different directions. We were able to make the inference fast enough to

show a new prediction based on which item in the completion list a user

is currently selecting. If a user doesn’t see a prediction, it’s because it

didn’t meet our display criteria.

UX problem 3: length of the predicted text.

The third UX rock was the length of the completion we would show. It

became apparent that shorter completions were better than longer ones,

from the perspective of reducing the cognitive load and saving

keystrokes. Not only was this interesting, but it also helped us reduce the

inference time by requesting fewer sub-tokens from the model. Our early

users also strongly expressed a distaste for suggestions that spanned

multiple lines. So, we decided to make short predictions, and never more

than would fit in the line that’s being worked on.

This wrapped up the largest bulk of UX challenges, and we were able to

ship IntelliCode line completions for C# in Visual Studio 2022, released in

the fall of 2021. This was, to my knowledge, the first GPT model to be

shipped to customers of any product category, that ran completely on

their machine without the need for a web connection to a data center.

GitHub Copilot

While we were busy building the first version of IntelliCode line

completions, our friends at GitHub were collaborating with OpenAI on

their GPT-3 based model for coding, called Codex, which is built to run

the inference in powerful datacenter computers, and as such was trained

in a larger and broader data set, producing results that IntelliCode line

completions could never produce. Both GitHub Copilot and IntelliCode

line completions show the predictions in grey text, but that’s about the

only thing they have in common. Both your car and an F-16 fighter jet

have a seat, and both can get you from A to B, but that’s about the

extent of their similarities. IntelliCode focuses on productivity and

effective work within your IDE, whereas GitHub Copilot is a truly versatile

programmer that can be nudged to generate complex code in seconds.

They serve different and somewhat compatible purposes.

When GitHub first started working on Copilot, they had very little

expertise in shipping extensions for Visual Studio, and our partnership

started naturally as we knew it would be mutually beneficial to

collaborate. I led the engineers that enabled the Visual Studio APIs that

Copilot consumes to produce the code prediction experience, and we

also shared a lot of our UX expertise with them in the process. Most

importantly for me, it allowed for very early dogfooding and bug bashing

for Copilot in Visual Studio and painted a clear path of differentiation

between our two offerings. I learned a lot about how collaborating with

external teams can elevate both groups, especially when working

together to a win-win scenario for GitHub and Visual Studio.



It’s amazing what can be done today with AI-assisted programming. If

you haven’t tried it yet, stop what you’re doing and take GitHub Copilot

for a spin, hopefully on a challenging problem or on a technology you’re

not very familiar with. I hope it blows your mind the way it keeps blowing

mine. If you’d prefer to run models locally in your machine, give

IntelliCode a try. Both IntelliCode and GitHub Copilot are available in

Visual Studio and in VSCode.

AI spring 2023, and smaller models

Again, back in the middle of 2023, as I sit and reflect on the current “AI

spring” and my own journey through producing multiple kinds of AI-

based products, it doesn’t surprise me that everyone is trying to pivot

and produce generative AI models for everything and in every product;

it’s surprising how much of an “iPhone moment” ChatGPT was, and how

the snappy and fast movements of OpenAI have enabled this moment; I

can see how people would want to produce features such as

IntelliCode’s repeated edits using a large language model such as GPT-

4, which I’m sure would work, but at a cost completely disproportional to

what makes IntelliCode a viable product. I know that smaller and more

targeted models can do wonders with a fraction of the cost to produce

and ship to users. The cost of these models matters: training,

productization, inference, all these costs must be assessed before

committing to an expensive AI investment path. Organically growing

capabilities based on your available data set and your customers’

problems should always yield interesting results. It may take years for

these investments to pay off, as was the case with IntelliCode, so the

right mindset must accompany the right execution, focused on the value

that you may be trying to achieve.
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Fascinating
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