
sankalp's blog

The Evolution of AI-assisted coding
features and developer interaction

patterns

Yes, I agree that's a fancy title. But consider this - what started as simple autocomplete

suggestions has evolved into something far more powerful – we now have AI that can

generate entire functions on the fly, scaffold complete files with proper architecture,

and even bootstrap entire codebases from scratch. The tools have evolved from being

helpful typing assistants to becoming collaborative coding partners.

The progress has been pretty insane. Whether you are a new developer or a seasoned

professional, I think understanding and adapting to these features/tools is the need of

the hour. As these tools advance, it's becoming a bit complex to figure out which ones

to use to maintain tight control. when to let AI take the wheel.

How much control should we give to these AI assist coding features? I present an

analogy here. You can think of AI-assisted coding features to be the gears of a car. In

first gear, you have maximum control over the engine but move slowly - that's the

autocomplete. Shift up through the gears (conversational assistant, cursor chat, agentic

mode), and you trade granular control for more speed and automation.

Latest Featured Blog Home About

21 Dec, 2024

↑

https://sankalp.bearblog.dev/
https://sankalp.bearblog.dev/
https://sankalp.bearblog.dev/
https://sankalp.bearblog.dev/evolution-of-ai-assisted-coding-features-and-developer-interaction-patterns/
https://sankalp.bearblog.dev/featured/
https://sankalp.bearblog.dev/blog/
https://sankalp.bearblog.dev/
https://sankalp.bearblog.dev/projects

In this post, we explore through the evolution of AI-assisted coding via three

perspectives -

1. Historical Narrative - What breakthroughs happened that led us to here. I think this

is essential for us to gain a deeper appreciation and understanding of these tools.

Some of you are too spoilt and take these tools for granted.

2. Interaction Patterns - How we use these tools, what UX they unlock, and some

observations of emerging patterns in their usage.

3. The Gears Analogy - Control vs Automation - How much control and trust are you

willing to trade for speed.

Fair warning: The blog will jump a bit between introducing new AI features and the

historical narrative.

Autocomplete

The code suggestions era

I started my programming journey in late 2018. My first programming language was

Python. I learnt it from Coursera’s Python for Everybody Specialization and some

sentdex and Corey Schafer videos. Back then, Kite was making waves with its "machine

learning" based code suggestions. However, I rawdogged my code in Pycharm and

Spyder IDE.

Around the same time, Microsoft released Intellicode in (2018-present) in VsCode and

Visual Studio IDEs which could provide contextually-aware suggestions about the next

methods, variables, essentially prioritizing the most likely suggestions in the

"Intellisense" list.

They trained their models on several open source projects hosted on Github. They

initially used Markov Chains and slowly moved to deep learning based suggestions in

https://visualstudio.microsoft.com/services/intellicode/

2020 (GPT-C). You can read more details in this blog post from one of the individual

contributors of that project.

Other prominent features were “Repeated Edits” detection - detecting pattern in your

edits and recommending automating similar changes throughout the codebase, “Quick

Actions” and refactoring suggestions.

It was also possible to train Intellicode on a company’s repository to align it’s

suggestions with the team’s coding standards. (enterprise part I believe)

Towards single line autocompletion

Microsoft eventually the introduced “whole line prediction”. Whole line code prediction

meant predicting the next logical line of code based on context. Remember the grey-

color predictions in the editor?

It's worth noting that early code completion models weren't language-agnostic like

today's tools. Each had its specialty: Intellicode focused on C# and .NET, ReSharper on

C#, and Eclipse IDE on Java.

https://www.linkedin.com/pulse/intellicode-story-2018-2022-david-obando

Multi-line autocompletion

The first real breakthrough came with Tabnine by Jacob Jackson. It was the first code-

editor to integrate GPT-2 for code completion. It led the groundwork for the future AI

code-editors. I am not 100% sure but it looks like TabNine was the first editor to support

language-agnostic multi-line code completions based on local context.

GPT-2's training on diverse codebases enabled the first truly language-agnostic code

completion model. Karpathy’s tweet shows how the tab completions used to look like.

here’s a video as well. It showed suggestions of next line along with the percentages.

https://x.com/aruslan/status/1151914744053297152

Andrej Karpathy

@karpathy · Follow

Autocompletion with deep learning tabnine.com/blog/deep
very cool! I tried related ideas a long while ago in days of
char-rnn but it wasn't very useful at the time. With new toys
(GPT-2) and more focus this may start to work quite well.

6:14 PM · Jul 18, 2019

1K Reply Copy link

Read 19 replies

You may notice that auto-completion has always been Tab.

Enter Block level code completions

We apparently didn’t have block level code completions like generating entire functions

or methods based on user input and context-awareness code gen or understanding

user intent

till the release of OpenAI Codex model. OpenAI codex powered Github Copilot. It was

able to perform the above features with decent accuracy.

https://twitter.com/karpathy?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1151887984691576833%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/karpathy?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1151887984691576833%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/karpathy?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1151887984691576833%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1151887984691576833%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F&screen_name=karpathy
https://twitter.com/karpathy/status/1151887984691576833?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1151887984691576833%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://t.co/WenacHVj7z
https://x.com/karpathy/status/1151887984691576833/photo/1
https://twitter.com/karpathy/status/1151887984691576833?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1151887984691576833%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1151887984691576833%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F&tweet_id=1151887984691576833
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1151887984691576833%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F&in_reply_to=1151887984691576833
https://twitter.com/karpathy/status/1151887984691576833?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1151887984691576833%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://openai.com/index/openai-codex/

Source: How Github Copilot is getting better at understanding your code

Fill in the middle

The autocompletions we have talked about so far were limited to left-to-right operation.

These models could only “append”. They couldn’t look ahead into the suffix for context.

Earlier models couldn’t fill the gap.

def calculate_total(items):
 # [gap here]
 return total

https://github.blog/ai-and-ml/github-copilot/how-github-copilot-is-getting-better-at-understanding-your-code/

This limitation was later addressed by the Fill in the middle technique introduced by

OpenAI. FIM stands for fill in the middle. Sometimes referred as bidirectional awareness

i.e understanding both before and after the cursor. Many of you reading this blog might

be hearing of FIM for the first time.

I recommend reading this blogpost by Codeium to understand the intuition for FIM.

OpenAI paper for training details.

Codeium was the first to integrate FIM in their extension beating Github Copilot who

also started supporting it by May ‘23 at scale. You can start seeing terms like “prompt

engineering” and “context-window” from the blog

Modern autocompletion has evolved further through:

LSP (Language Server Protocol) integration for real-time syntax info and symbol

references

Robust codebase indexing for tracking function relationships

Enhanced context awareness through AST and symbol table analysis

The journey from simple text completion to context-aware code generation shows how

far we've come, but this was just the beginning of what's possible with AI-assisted

coding.

https://codeium.com/blog/why-code-completion-needs-fill-in-the-middle
https://openai.com/index/efficient-training-of-language-models-to-fill-in-the-middle/
https://github.blog/ai-and-ml/github-copilot/how-github-copilot-is-getting-better-at-understanding-your-code/

We have already reached May’23 in the timeline. Of course, we didn’t want to stay

limited to just autocomplete. We started getting coding assistants sometime back from

late 2022. It’s time to talk about coding assistants now, we will return back to

autocompletion later.

Towards (Conversational) Coding
assistants and AI-first Editors

Nov 30, 2022 - ChatGPT research preview
featuring GPT-3.5

ChatGeeBeeDee 3.5 was probably the first time people people started realising the

potential of code generation via LLMs. You could talk to this chatbot that could explain

you entire blocks of code. It could provide accurate code if you provided it with a good

enough prompt and relevant context.

Fast-forward March’23, we got the GPT-4 model which was amazingly good at code

generation. Copilot integrated GPT-3.5/GPT-4 for copilot chat.

Post July ‘23, we got Llama-2 release which led to a cambrian explosion in the open

source local LLM scene - in domains of code generation fine-tuning, character roleplay

etc.

The Opportunity for AI code-editors

The pattern of work for a long time was dumping code in chatGPT (Plus), writing decent

prompts and then copy-pasting code back to our editors. It required you to spot the

correct places to paste too. I personally was ok with this workflow for a long time xD as I

got to look at the code more and carefully read through the differences.

The other drawback was the “context-switching” penalty not just limited to

changing window but also the fact that you may start browsing haha. The launch of

GPT3.5/4 prompted a marketspace for various AI-editors. There were many problems to

solve for better developer experience, primarily being

Eliminate context switching between chat platforms and editors

Implementing direct code edits from the LLM output

Figure out ways to provide context more effectively to the LLMs

Codebase indexing / better context awareness to feed to LLMs

Enters Cursor

The challenge was to be able to do all the above in a smooth and low-latency manner. I

recommend checking out cursor’s Problems-2023 blog.

Cursor was the first to jump ship on the same for implementing the chat experience and

the diff-edit generation workflow (where they automatically apply the edits and show it

in diff format). In hindsight, this was essential to leverage the GPT-4 hype. Shipping fast

and offering a great UX was the key.

Shortly later, Cursor added features like partial accept and reject, codebase context

feature that would semantically search across your codebase for your query. Later, they

added CMD+K (line edit), CMD+L (chat) workflows.

https://www.cursor.com/blog/problems-2023

Image source: Cursor Changelog

There were several other projects like Continue Dev (supported OSS models as well),

Codeium but they didn’t implement the edit experience as early as Cursor. There diff-

apply (now fast-apply) plus chat interface was also smooth and preferred by people.

Back to autocompletion → Copilot++

Cursor’s autocomplete is the most advanced autocomplete I have used so far. It’s like

the boss of autocompletions we have discussed - it’s trained (or finetuned?) in such a

way that it predicts the next-action of the developer. Very intent-driven. “I made this

change and the next line the model should go is line 18 … and the model should know it”.

You can try refactoring name of a variable and it will suggest a multi-line refactoring.

You could write comments for a function signature or a part of code and it will

appropriate suggest completions (with FIM ofc).

https://www.cursor.com/changelog
https://youtu.be/oFfVt3S51T4?t=1053
https://youtu.be/oFfVt3S51T4?t=1053

Karpathy switching to Cursor was probably an inflection point for them. But IMO, the

main inflection point was Cursor was the release of Sonnet 3.5 late in June ‘24. It was

much better at code generation than any other models and was more agentic (better at

instruction following and function calling). The solidified UI/UX experience, copilot++

helped them ride Sonnet’s wave.

Supermaven (autocompletion mainly)

Supermaven (by Tabnine founder) had a competitive (to Cursor) autocomplete too. I

haven’t used it personally so based on hearsay and reading other’s inputs, it was at par

or slightly worse than copilot++ but certainly faster. SuperMaven’s speciality at launch

was a 100K token context window (more than GPT-4 and Sonnet (200K context) didn’t

exist yet) which helped provide a tonne of context for better and faster autocomplete

generations. They trained their own model with modifications over vanilla self-attention.

Jacob Jackson
@jbfja · Follow

Five years ago I created TabNine, the first commercial code
completion tool to use deep learning.

Today I'm releasing Supermaven, the first code completion
tool with a context window exceeding 100,000 tokens.

Watch on X

10:35 PM · Feb 22, 2024

1.9K Reply Copy link

Read 107 replies

They later added Copilot++ like next-action prediction capabilities (including cross-file

jumps which probably Cursor can’t do yet), 1M context window.

Supermaven didn’t have a chat experience integrated - it was an extension. They could

not add several features due to VSCode’s API limitations for extensions. They merged

with Cursor recently. I am excited for what’s about to come in Cursor w.r.t to their

codebase indexing and autocomplete experience. Jacob mentions in this interview

0:49-1:14: Their visions and approaches to AI coding were converging and had

significant overlap

2:11-2:14: Super Maven would eventually need to build their own IDE due to VS

Code extension limitations, duplicating Cursor's work

https://twitter.com/jbfja?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1760780340342505653%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/jbfja?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1760780340342505653%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/jbfja?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1760780340342505653%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1760780340342505653%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F&screen_name=jbfja
https://twitter.com/jbfja/status/1760780340342505653?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1760780340342505653%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/jbfja/status/1760780340342505653?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1760780340342505653%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/jbfja/status/1760780340342505653?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1760780340342505653%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1760780340342505653%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F&tweet_id=1760780340342505653
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1760780340342505653%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F&in_reply_to=1760780340342505653
https://twitter.com/jbfja/status/1760780340342505653?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1760780340342505653%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://x.com/SupermavenAI/status/1828477578346156077
https://x.com/SupermavenAI/status/1828477578346156077
https://x.com/SupermavenAI/status/1808256013788676438
https://youtu.be/ruy6cyBu0PA?t=128

2:35-2:52: The teams had complementary strengths - Cursor focused on user

experience while Super Maven specialized in AI models

28:12-28:19: Direct quote from Jacob: "throughout Super Maven I always thought if

there was one other team that I would like to join forces with it would be cursor"

I am expecting major upgrades to the tab autocompletion loop - it will probably be able

to predict your actions across multiple files at once. supermaven’s 1M long context

model should improve the autocomplete as well as context detection in cursor chat /

composer agent mode.

OSS Code editors

2024 saw the emergence/more popularity/funding of OSS code-editors and extensions

like Continue dot dev (autocomplete, OSS models, code explanation but no apply of

edits), Aider-chat (llm chat + edits via terminal), Pear AI, AIDE, avante.nvim plugin…

Personally, I have found only aider-chat interesting to use a bit. I love their blog.

Patterns

The lower the gear in a car, the more control you have over the engine but you can

go with less speed. If you feel in control, go to a higher gear. If you are overwhelmed or

stuck, go to a lower gear. AI assisted coding is all about grokking when you need to gain

more granular control and when you need to let go of control to move faster. Higher

level gears leave more room for errors and trust issues. Prompts are the steering

wheels (gear 2 onwards).

An observation from a small sample of people - more senior people or people working at

the cutting edge prefer lower gears. Non-technical people are attracted more by the

higher gears (ironically).

1st Gear Autocomplete

There’s a lot of emphasis on code generation via LLMs but the model level UX unlock

(”baked into the weights”) that truly makes editors feel like a magical comfy place is the

autocomplete. Autocomplete is probably the first or second most used feature in AI

code editors - you will find yourself working in an existing codebase more often than

coding one from scratch.

If you ask senior engineers (who still write code and not just do meetings), they will say

they mostly use autocomplete. People working in specialised domains where the LLMs

are still not good also probably benefit the most from autocomplete.

When you are working on an existing codebase, you are making more edits than writing

brand new code. In production codebases, you would find yourself pattern matching to

write new features often. Production code requires more surgical precision than broad

strokes.

You are mostly making edits across files, targeting to insert a feature somewhere or

fixing some bug, possibly refactoring. Here the localised context (remember

supermaven 1M context model?) fed into the model is important.

The point I am trying to make is - autocomplete speaks to your desire of a more granular

control over your actions. It’s like driving your car in the first gear. The lower the gear,

the higher the control on the engine of the car. And a good autocomplete model fulfills

your control preferences by figuring out the exact context and intention.

I love how the Cursor engineers are framing autocomplete as a more generalized “next

action prediction” model problem.

To start, we've extended Copilot++ to predict your next location. Combine this with

next edit prediction, and the model can play through a sequence of low-entropy

changes:

We press tab 11 times and all other keys 3 times. We call this Cursor Flow (for

obvious reasons).

We're working on predicting the next file you will move to. The next terminal

command you will run. The next edit, conditioned on your previous terminal

commands! A next action prediction model.

Furthermore, the model should surface information the moment you need it.

Whether it be the right piece of code or documentation.

Cursor should feel like an extension of your will. The moment you think of a change,

the language model requires minimal intent to execute it instantly.

2nd Gear - Conversational LLM /
standalone chat

A lot of programming work boils down to three things

knowledge

localised context

understanding

If you want to add a feature in an existing codebase and you are ready to implement, the

next step is figuring out where the fuck you want to make the change. Bolded the

“fuck” because I have PTSD from digging humongous Java codebases to find the files

where I want to make the change. (I couldn’t use AI either so the fastest way was to run

the server and hook up Intellij Debugger. Set up a few breakpoints and then grok the

flow of the program).

This is where features like cursor chat comes handy. You can ask questions across the

codebase using the @codebase feature that uses semantic search across codebase to

search for relevant files. Post that, you could ask questions to improve your

understanding of the codebase.

Alternatively, if it’s allowed to copy paste, you can copy relevant files or dumping entire

codebases into claude’s 200K context or 1M long context models like gemini 2.0 flash /

1206 exp and then asking questions as to where one can find what.

Autocomplete + Chat together are like steroids especially when you are editing or

debugging stuff. I feel this is a “cognitive level” unlock as you are improving your

understanding of the code.

There’s a lot of emphasis on code-generation in 2024/5 and shipping but not a lot on

how we can use these tools to deepen our understanding of codebases and ultimately

tech itself. Topic for another post I guess.

3rd Gear - Cursor Chat + Apply Edit,
Windsurf Cascade Chat

I would place copy-pasting generated code from ChatGPT/Claude AI platform in the 2nd

gear. It gives more control to the user since they have to manually determine the

position of changes and it’s slower. Also involves a context-switch which is very

susceptible to changing tabs and going onto internet detours.

The 3rd gear was probably introduced by Cursor. Parsing LLM output and applying the

edits in the correct places. Emphasis on correct places as it saves so much labour plus

solves for the context-switch issue.

The diff format also helps me quickly review through the code. This is fast plus I get to

review the code. The control is still there and your trust issues aren’t triggered because

you can still verify the changes (and reject changes)

This has actually been a pretty hard problem to solve due to stuff lazy coding from

models like GPT-4 although Sonnet probably made it easier for the developers.

Their blog on this is no longer up but it was mostly solved initially by using unified

diff. They later added speculative editing to make it faster.)

People who are writing a lot of new features or doing 0 to 1 - gear 3 is a sweet spot.

https://aider.chat/docs/unified-diffs.html#choose-a-familiar-editing-format
https://aider.chat/docs/unified-diffs.html#choose-a-familiar-editing-format
https://fireworks.ai/blog/cursor

My recommendations for Gear 3 is to divide your task into subtasks and then work on

each of them individually. Make sure to refresh the context window for each task.

Hint: Plus button

If you are working in a more mature codebase, you will operate the most in Gear 1 to 3.

4th Gear - Agentic features - Windsurf
Cascade and Composer Agent mode

Honourable mention: Composer - normal mode is useful for multi-file editing and

refactoring. It detects context on it’s own but not very reliable to be honest. Composer

agent mode solves for this though.

Things get a bit spicy here. This gear is only possible because of models like Claude 3.5

Sonnet with great agentic abilities. “Agentic” - in simple language, refers to the model’s

ability to be able to figure out, plan and proactively perform subtasks on it’s own to

complete your main task.

More specifically, the model can plan subtasks, do some stuff, be aware of intermediate

states, look at the intermediate context, adjust it’s course of execution and complete the

end user task.

Agentic abilities are “baked in the weights” via pre-training and fine-tuning for function

calling. When people say a model is agentic, they mean it’s able to follow your

instructions accurately (”good instruction following”) and it is good at tool/function

calling.

To be good at agentic code-generation, the model also needs to be very good at code

generation obviously. Sonnet is a great balance of great coding skills and SOTA agentic

performance. Sonnet new is even better at agentic codegen. It is more pro-active than

old Sonnet. TLDR: Agentic mode is a capability unlock at the model level.

You can see in above video how Sonnet keeps calling “Artifact” several times to

complete the task. I believe it’s a tool call to open up Artifacts. This is agentic.

Windsurf by Codeium seems to be the first editor to introduce the proper agentic mode

at the editor level. It’s primary mode of function is “Cascade”. When I had first used it,

it felt like taking a glimpse into the near future of coding.

Edit: My experience with Windsurf was from a few weeks back. They have now added a

Chat mode too where you can brainstorm and apply edits manually.

You can basically tell some high level instructions and the model will keep planning and

doing a bunch of tasks, running commands through terminal, creating files etc. to

complete your task. It shows it’s own “agency”. Windsurf provides a great interface to

see all the things the model is doing and shows the diff edits like Cursor does. UI/UX

wise, I think it’s better than Cursor Agent mode. Also slightly better at detecting the

context (opinion based on some personal usage from a few weeks back and hearsay

from friends)

0:00 / 0:17

https://codeium.com/windsurf

“Agent mode” in editor is extremely useful for refactoring files and making multi-file

creation/edits. It’s usefulness is more when you are in the 0 to 1 phase as compared to

being in the middle of dev stages. There can be errors often though in terms of file

detection or just undesirable code (lots of code being generated so context window

may be exhausting, knowledge cutoff issues)

You are trading off a lot of control here to ship faster. The editors implement diff

views so atleast you can review the changes though. I am comfortable using agent

mode in cursor when I roughly know which files to edit.

It seems less experienced programmers are more attracted to Windsurf because of the

appeal of Cascade (although I feel the sweet spot for them is gear 3). Windsurf is very

competitive to Cursor however it still needs some polish and support for minor features

(like fetching docs from a link). Cursor is more power user centric and provides more

gears to operate with. That said, Windsurf tends towards reducing decisions on the

user's side.

Personal observations

In programming, getting stuck is common. When I get stuck, I would like to try a

different mode of operation - where I have more control and is slower. That way having

0:00 / 0:30

the option to switch to a lower gear like chat from agent mode offers a good way to

pace myself / slow down and think on the issue. Beginners are more susceptible to get

into the error loop...

Agent modes also eat up your requests quota faster. Less experienced people/non

technical will suffer more here because they are going to be stuck in loops more often.

Which is why again I prefer chat+edit mode where you can control your requests quota

too implicitly.

One pattern of usage I like is - use agent to make draft of features (as it can create files

at correct places) and then carry on with chat + autocomplete.

5th Gear - Coding agent tools

I had always been skeptical at agents but after the launch of new sonnet and working on

a project recently which had an agentic component to it - I realised if you narrow down

the scope of problem you are solving, agents are effective. The value you get is in

reduction of human hours.

I have personally tried bolt.new. It works on the same principle. The scope is clear - 0 to

1 bootstrapping with a opinionated frontend framework (at which the LLM is also good).

bolt.new is very good for 0 to 1. Once the codebase matures, you start seeing

diminishing returns.

We also saw the advent of Replit Agent, Devin although I have not personally tried

these. These are more broadly scoped - end to end agents. “ai software engineer” if

you will. Devin for instance can navigate through your codebases, take notes, make

changes, report back. It can work in async (but it’s slow based on what i have read)

Agents are all about how losing control to do stuff faster. The scope for error and

mishaps is also the most here especially in the broadly scoped ones. I personally

prefer editors (gear 1 through 4) instead of coding agent tools.

http://bolt.new/

Common pitfalls with agentic tools and
considerations

You can ship fast with cursor agent or windsurf cascade. Same for standalone tools.

You are only fast till you get stuck and when you get stuck, it can be hard to debug

sometimes (especially for lesser experience programmers or non technical people). The

models can get stuck in loop often due to outdated knowledge (for instance sonnet

cannot debug nextjs 15 breaking changes to nextjs14).

You will have to read docs and stackoverflow/github discussions, search for the solution

the traditional way. Change gears - Gear 2 and 3 are very effective here. My tip here is

to improve your understanding of the code at this point. Understand the problem you

are trying to solve to prompt better or solve the bug manually.

AI assisted coding can be very fast until it isn't

Most slowdowns happen in the last mile of features - hence you need to be aware of

what’s going on in the code. Otherwise debugging is gonna be painful. Screenshot from

the “the 70% problem: Hard truth about AI assisted coding”. I highly recommend

reading this blog as it offers actionable insights to get better at AI Assisted coding.

0:00 / 0:20

https://addyo.substack.com/p/the-70-problem-hard-truths-about

Tunnel vision

Avoid tunnel visioning. If you are stuck somewhere, take a break. Zoom out and think

broadly. Discuss with LLMs or teammates about alternative approaches and then

proceed again.

Learn basics if new to an area

Varun Mayya

@waitin4agi_ · Follow

Solid way to put it. “Conversion of unknown unknowns to
known unknowns.”

sankalp @dejavucoder

Replying to @dejavucoder

more food for thought

- the better you know something, the better you shall be able to prompt the
LLMs for it simply because of conversion of unknowns unknowns to known
unknowns

- maybe the whole ROI discussion is a facade if you need to optimise your
shit rn or are super

11:03 AM · Oct 6, 2024

403 Reply Copy link

Read 11 replies

I also recommend you atleast learn the basics of whatever you are working on in order

to prompt well. Learning basics means you are able to convert unknown unknowns to

known unknowns.

Time to wrap up the post now. It's been very long.

Conclusion

AI-assisted coding is only gonna improve from here. It's high time we utilize it the best.

We already have very strong models and they are only going to get better. Lots of work

https://twitter.com/waitin4agi_?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1842853288644878783%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/waitin4agi_?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1842853288644878783%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/waitin4agi_?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1842853288644878783%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1842853288644878783%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F&screen_name=waitin4agi_
https://twitter.com/waitin4agi_/status/1842853288644878783?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1842853288644878783%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://x.com/waitin4agi_/status/1842853288644878783/photo/1
https://twitter.com/waitin4agi_/status/1842853288644878783?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1842853288644878783%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1842853288644878783%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F&tweet_id=1842853288644878783
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1842853288644878783%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F&in_reply_to=1842853288644878783
https://twitter.com/waitin4agi_/status/1842853288644878783?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1842853288644878783%7Ctwgr%5Eb0570078d64d4103e9f93221d9bceb89cdf4d12e%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsankalp.bearblog.dev%2Fevolution-of-ai-assisted-coding-features-and-developer-interaction-patterns%2F

needs to be done on integrating context side. Sorry, this word comes 30+ times in this

blog but context is really the key.

I hope the gears analogy will help you in some way in your daily workflows. Thanks for

reading. Please share if you liked it.

#AI #featured #technical

69

Powered by Bear ʕ•ᴥ•ʔ

https://sankalp.bearblog.dev/blog/?q=AI
https://sankalp.bearblog.dev/blog/?q=featured
https://sankalp.bearblog.dev/blog/?q=technical
https://bearblog.dev/

